Scalingup in-Scope

How to use CiCd and Unit Testing to ensure quality and correctness
as your databricks platform grows in size and scope.

Simon Heisterkamp
Databricks User Group Iceland
2025-05-07

1-slide summary

Proof of concept

Success leads to
growth leads to
complexity

Modules and
interfaces

Unit & Integration
Testing

CICD

Strategy
Scalability
Testable Code

Examples

Subjective
experience

Summary

About me

PhD partice physicist 8 years experience in defense 4 years experience with Freelance Developer
and energy Databricks since 2025

Worked at CERN Systems Engineering

Datasets counted in peta bytes Testing and Quality Control

(1.000.000Th)

Co-author of Higgs particle discovery

Starting point

* The proof-of-concept works

Build on success — add functions

Reuse components
* tables & code

Ch-ch-ch-changes...

How to maintain quality?

Systems Engineering

Analysis Testing
* Integrate parts upwards

* Any complexity can
be managed i S« Test every level

* Subdivide * Test every integration
Design Testing

* Assign functions

* Simple units

* |n practice: iterate!

The PR flow & CICD

* Test and deploy pipelines are custom code
* Continuous Integration — test often
* Continuous deployment — deploy often

So far—-so
theoretical...

In repo: ETL code and table
schemas

1.

Challenge: Does the code run
with described schemas?

Challenge: Does the code run
on the production context?

Challenge: What to do with
deployed schemas onrepo
changes?

Strategy

Manual Testing
* Low setup
* Conceptually simple
e Slow pertest

Automated Testing
e Larger Setup
* Maintenance
* Fragile Tests
* Testcode is also Code

* Test often - find problems sooner

e Don’t automate too late!

Strategy

Manual Testing
* Low setup
* Conceptually simple
e Slow pertest

Automated Testing
e Larger Setup
* Maintenance
* Fragile Tests
* Testcodeisalso Code

* Test often - find problems sooner

e Don’t automate too late!

Scalability

Manual Testing Effort

— Feature 1 Code YERTEL

Feature 2 Code Manual Retest

Feature 2 Code Manual Retest

Automated Testing Effort

Feature 1 Code Auto Test
Feature 2 Code Auto Test

Feature 2 Code Auto Test

Retest

How to
Automate?

Context
* Local spark
* Databricks Connect
* job cluster

* Framework
* Pytest
* Unittest

Modules
* Notebook reuse

* Object oriented python
library

Instrumentation
* Mocking
* Dependencyinjection

My Notebook

File Edit View Run Help

i > 1
& df = spark.table("raw_data")

<

> 2

df2 = spark.table("mycustomers")

:

result = df.join(df2, ["customer_id"],"left")
result.write.mode("overwrite").saveAsTable("joined_d

Example: Table Abstraction

D
o
* Every table exists in two places
* As data - with schema and contents
* As aconceptincode Name
. (] e CREATE TABLE IF NOT EXISTS my_db.detai
* “desired” vs “actual” state (] B et iog i
[} & part-00000-01b0efdb-3d5... MY-string STRING,
[] 2 part-00000-0471889f-586...)my‘timeTlMETAMP
/ \ [] @ part-00000-099ba408-ab... NG DELTA
P [] [2) part-00000-0f428376-44a...

(2 nart-0N0N0-100~Afde-12h

V1-2>V2

V1 V2 df = sM_data")

Example: Table Abstraction - 2

-- SPETLR.CONFIGURATOR key: MyDataTable
CREATE TABLE IF NOT EXISTS raw_data{ID}
« Debug tables for testing (N

item_i)
* New abstraction layer timePoint TIMESTAMP,
powerWatt Decimal(12,2),
chargingStatus INT,
powerGridZone STRING,
cost DECIMAL(12,2),
idTokenCustomerCrmId STRING
P_startConsumptionDate DATE

e Standard table creation

* Tooling support

from spetlr import Configurator
from spetlr.delta import DeltaHandle

from demo import sql

configure)
¢ = Configurator()

c.add_sql_resource_path(sql)

read production tables

df = DeltaHandle.from_tc("MyDataTable").read()

select debug tables

c.set_debug()

df2 = DeltaHandle.from_tc("MyDataTable").read()

Example: Table Abstraction - 3

* Testing:
* Create debugtables
* Check ETL canrun

* Deploy Tables — compare schema:
* Match? No change.
* Mismatch?

* Recreate
* Append
* Error
* Deploy ETL
[

V2
Jv

ug

Real world examples

Spetlr
e ETL: 12528 loc
e Tests: 15192 loc

* Infrastructure and
pipelines: 2192 loc

Clever A/S
e ETL: 74241 loc

e Tests: 29853 loc

* Infrastructure and
pipelines: 6578 loc

= o spetlr-org / spetlir Q 8 -~ + - O N

<> Code (©) Issues 24 i1 Pull requests 10 L)) Discussions (*) Actions

& Pre-Integration

@ Add timeout_power_bi_in_seconds to PowerBi refresh #1098

() Summary
integration_test
succeeded on Mar 25 in 28m 4s
Jobs
@ unit_test

@ Setupjob

@ integration_test
@ Run actions/checkout@v4

Run details

@ Setup Python

(% Usage

@ Build Spetlr Library
&Y Workflow file

Psychological Aspect

* Engineers enjoy creating elegant algorithms

* Engineers generally don’t enjoy manual repetitive
task

* Automating tests draws on core strengths of your
team

Summary

* Infrastructure as Code (terraform)

* Non-production environments (dev-staging-prod)

* Catalogs — Databases — Tables (schema & properties) all as code
* Modularize, then unit-test modules

* Make code testable & testintegration of modules

* ETL in python library — easier to test than notebooks
* Testinjob cluster —test runtime and all libraries
* PR flow - all changes tested before merge

* Deploy tables changes
“Test as you fly” — NASA

Questions?

Source:

spetlr.com

Get in touch:

linkedin.com/in/simon-heisterkamp

	Slide 1: Scaling up in Scope
	Slide 2: 1-slide summary
	Slide 3: About me
	Slide 4: Starting point
	Slide 5: Systems Engineering
	Slide 6: The PR flow & CICD
	Slide 7: So far – so theoretical…
	Slide 8: Strategy
	Slide 9: Strategy
	Slide 10: How to Automate?
	Slide 11: Example: Table Abstraction
	Slide 12: Example: Table Abstraction - 2
	Slide 13: Example: Table Abstraction - 3
	Slide 14: Real world examples
	Slide 15: Psychological Aspect
	Slide 16: Summary
	Slide 17: Questions?

